Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 190, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365890

RESUMO

Enzymatic dissociation of human pluripotent stem cells (hPSCs) into single cells during routine passage leads to massive cell death. Although the Rho-associated protein kinase inhibitor, Y-27632 can enhance hPSC survival and proliferation at high seeding density, dissociated single cells undergo apoptosis at clonal density. This presents a major hurdle when deriving genetically modified hPSC lines since transfection and genome editing efficiencies are not satisfactory. As a result, colonies tend to contain heterogeneous mixtures of both modified and unmodified cells, making it difficult to isolate the desired clone buried within the colony. In this study, we report improved clonal expansion of hPSCs using a retinoic acid analogue, TTNPB. When combined with Y-27632, TTNPB synergistically increased hPSC cloning efficiency by more than 2 orders of magnitude (0.2% to 20%), whereas TTNPB itself increased more than double cell number expansion compared to Y-27632. Furthermore, TTNPB-treated cells showed two times higher aggregate formation and cell proliferation compared to Y-27632 in suspension culture. TTNPB-treated cells displayed a normal karyotype, pluripotency and were able to stochastically differentiate into all three germ layers both in vitro and in vivo. TTNBP acts, in part, by promoting cellular adhesion and self-renewal through the upregulation of Claudin 2 and HoxA1. By promoting clonal expansion, TTNPB provides a new approach for isolating and expanding pure hPSCs for future cell therapy applications.


Assuntos
Benzoatos , Células-Tronco Pluripotentes , Piridinas , Humanos , Amidas/farmacologia , Claudinas/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Retinoides/farmacologia , Retinoides/metabolismo
3.
Curr Protoc ; 1(9): e230, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34491629

RESUMO

Progress in extracellular vesicle (EV) research over the past two decades has generated significant interest in using EVs in the biomedical field. Exosomes are a subgroup of EVs that comprise endocytic membrane-bound nanovesicles of 40 to 160 nm diameter. These vesicles have been shown to facilitate intercellular communication via the delivery of cellular molecules. There are currently several exciting applications for exosomes being developed in therapeutics, diagnostics, drug delivery, and cellular reprogramming. Stem cell-derived exosomes present the opportunity to harness the power of stem cells while circumventing several of the risks associated with their use. This review summarizes the recent developments in exosome technology and lends a prospective view to the future of exosome use and application in research and medicine. Through a review of relevant patent filings, recent literature, and ongoing clinical trials, a valuable overview of the field of exosomes is provided. © 2021 Wiley Periodicals LLC.


Assuntos
Exossomos , Vesículas Extracelulares , Sistemas de Liberação de Medicamentos , Estudos Prospectivos , Células-Tronco
4.
Cell Biochem Biophys ; 78(3): 331-345, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32462384

RESUMO

Dynein is a cytoskeletal molecular motor protein that moves along the microtubule (MT) and transports various cellular cargos during its movement. Using standard Molecular Dynamics (MD) simulation, Principle Component Analysis (PCA), and Normal Mode Analysis (NMA) methods, this investigation studied large-scale movements and local interactions of dynein's Microtubule Binding Domain (MTBD) when bound to tubulin heterodimer subunits. Examination of the interactions between the MTBD segments, and their adjustments in terms of intra- and intermolecular distances at the interfacial area with tubulin heterodimer, particularly at α-H16, ß-H18, and ß-tubulin C-terminal tail (CTT), was the main focus of this study. The specific intramolecular interactions, electrostatic forces, and the salt bridge residue pairs were shown to be the dominating factors in orchestrating movements of the MTBD and MT interfacial segments in the dynein's low-high-affinity binding modes. Important interactions included ß-Glu447 and ß-Glu449 (CTT) with Arg3469 (MTBD-H6), Lys3472 (MTBD-H6-H7 loop) and Lys3479 (MTBD-H7); ß-Glu449 with Lys3384 (MTBD-H8), Lys3386 and His3387 (MTBD-H1). The structural and precise position, orientation, and functional effects of the CTTs on the MT-MTBD, within reasonable cut-off distance for non-bonding interactions and under physiological conditions, are unavailable from previous studies. The absence of the residues in the highly flexible MT-CTTs in the experimentally solved structures is perhaps in some cases due to insufficient data from density maps, but these segments are crucial in protein binding. The presented work contributes to the information useful for the MT-MTBD structure refinement.


Assuntos
Dineínas/química , Ligação Proteica , Domínios Proteicos , Tubulina (Proteína)/química , Algoritmos , Animais , Sítios de Ligação , Dictyostelium/metabolismo , Ligação de Hidrogênio , Hidrólise , Microtúbulos/metabolismo , Simulação de Dinâmica Molecular , Análise de Componente Principal , Multimerização Proteica , Estrutura Secundária de Proteína , Eletricidade Estática , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...